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‘ Preface and Acknowledgements

The past fifteen years have seen a quiet revolution in iso-
tope geochemistry, as a once-arcane field involving ‘extinct’
radionuclides in meteorites has called into question funda-
mental geochemical models of the Earth itself. At the same
time, increasing public awareness of the problem of anthro-
pogenic global warming has focused attention on the role of
isotope geochemistry in monitoring past and present influ-
ences on climate change.

The third edition of Radiogenic Isotope Geology attempts
to place these and other recent developments in scientific
thinking in their overall scholarly context.

The approach to the subject matter is historical, for three
main reasons. Firstly, to give an impression of the develop-
ment of thought in the field so that the reader can under-
stand the origin of present ideas; secondly, to explain why
past theories have had to be modified; and thirdly, to present
‘fall back’ positions lest current models be refuted at some
future date. This approach embodies the scholarly principle
that knowledge of the classic work in the field is the starting
point for current research.

The text is also particularly focussed on three types of lit-
erature. Firstly, it attempts to give accurate attribution of
new ideas or methods; secondly, it reviews classic papers
which have become standards in their field; and thirdly, it
presents case studies that have evoked controversy in the lit-
erature, as examples of alternative data interpretations.

The organization of the book allows each chapter to be
a relatively free-standing entity covering one segment of the
field of radiogenic isotope geology. However, the reader may
benefit from an understanding of the thread, which, in the
author’s mind, links these chapters together.

Chapter 1 introduces radiogenic isotopes by discussing
the synthesis and decay of nuclides within the context of
nuclear stability. Decay constants and the radioactive decay
law are introduced.

Chapter 2 provides an experimental background to many
of the chapters that follow by discussing the details of mass
spectrometric analysis (TIMS and ICP-MS), along with a dis-
cussion of isochron regression fitting.

The next three chapters introduce the three pillars of
lithophile isotope geology, comprising the Sr, Nd and Pb
isotope methods. Emphasis is placed on their applications
to geochronology and their evolution in terrestrial systems.
Chapter 3 covers the Rb-Sr system, since this is one of
the simplest and most basic dating methods. Chapter 4
covers the Sm-Nd system, including the use of Nd model
ages to date crustal formation. Chapter 5 examines U-Pb
geochronology and introduces the complexities of terrestrial
Pb isotope evolution in a straightforward fashion. Each chap-
ter ends with an examination of these isotopes as environ-
mental tracers, focussing particularly on the oceans.

Chapters 6 and 7 apply Sr, Nd and Pb, as geochemical trac-
ers, to the study of oceanic and continental igneous rocks.
This is appropriate, because these isotopes are some of the
basic tools of the isotope geochemist, which together may
allow understanding of the complexities of mantle processes
and magmatic evolution. These methods are supplemented
in Chapters 8 and 9 by insights from the Re-Os, Lu-Hf and
other lithophile isotope systems, which arise from their dis-
tinct chemistry.

Chapter 10 completes the panoply of long-lived isotopic
dating systems by introducing the K-Ar, Ar-Ar and U-He
methods, including their applications to magnetic and ther-
mal histories. This leads us naturally in Chapter 11 to the
consideration of rare gases as isotopic tracers, which give
unique insights into the de-gassing history of the Earth.

Chapter 12 introduces the short-lived isotopes of the ura-
nium decay series, covering classical and recent develop-
ments in the dating of Quaternary-age sedimentary rocks.
This prepares us for the complexities of Chapter 13, which
examines U-series isotopes as tracers in igneous systems.
Short-lived processes in mantle melting and magma evolu-
tion are the focus of attention here.

Chapter 14 examines the most important of the cosmo-
genic isotopes. These represent a vast and growing field of
chronology and isotope chemistry, which is especially perti-
nent to environmental geoscience. In particular, the radio-
carbon method is a vital dating tool in archaeology and a
tracer of the ocean-atmosphere system involved in climate
change.

Chapter 15 represents a comprehensive review of the
‘extinct nuclide’ systems in meteorites that have recently
raised questions about the cosmic context of terrestrial geo-
chemistry. This overview deals with all of the major extinct
nuclide pairs, and discusses their significance for the origins
of the solar system and the Earth.

Lastly, Chapter 16 examines the specialized field of (radio-
genic) fission track analysis, originally developed as a regular
dating method, but increasingly applied to thermal history
analysis.

The text is gathered around a large number of diagrams,
many of which are classic figures from the literature. I grate-
fully acknowledge the many authors whose original data and
diagrams form the basis for these figures. Author acknowl-
edgement for all figure sources is given within individual
figure captions, and corresponding titles, journal names, vol-
umes and pages are contained in the list of cited references
at the end of each chapter.

Alan P. Dickin
McMaster University
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Nucleosynthesis and Nuclear Decay

|.I The Chart of the Nuclides

In the field of isotope geology, neutrons, protons and electrons can be regarded as the fundamental building blocks of the
atom. The composition of a given type of atom, called a nuclide, is described by specifying the number of protons (atomic
number, Z) and the number of neutrons (N) in the nucleus. The sum of these is the mass number (A). By plotting Z against N
for all of the nuclides that have been known to exist (at least momentarily), the chart of the nuclides is obtained (Fig. 1.1). In
this chart, horizontal rows of nuclides represent the same element (constant Z) with a variable number of neutrons (N). These
are isotopes.
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Chart of the nuclides in coordinates of proton number Z, against neutron number N. () = stable nuclides; ((J) = unstable
nuclides; () = naturally occurring long-lived unstable nuclides; (1) = naturally occurring short-lived unstable nuclides. Some
geologically useful radionuclides are marked. Smooth envelope = theoretical nuclide stability limits. For a more detailed nuclide chart,
see Appendix |.
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A botal of 264 stable nuclides are known, which have
not been observed to decay with available detection equip-
ment. These define a central ‘path of stability’, coloured
black in Fig. 1.1. On either side of this path, the zig-zag
outline defines the limits of experimentally known unstable
nuclides compiled by Hansen (1987). These species tend to
undergo increasingly rapid decay as one moves out on either
side of the path of stability. The smooth outer envelopes are
the theoretical limits of nuclide stability (‘drip lines’) beyond
which prompt decay occurs. This means that the synthesis
and decay of an unstable nuclide occurs in a single particle
interaction, giving it a zero effective lifetime.

As work progresses, the domain of experimentally known
nuclides should approach the theoretical envelope, as has
already occurred for nuclides with Z < 20 (Thoennessen,
2013). This has been achieved over the past 60 years using
heavy ion accelerators (e.g. Darmstadt) to make exotic species
by collision. Because of the curvature of the path of stabil-
ity (Fig. 1.1), it was relatively easy to populate the proton-
rich side of the path of stability, since these species can be
made by fusion of lighter elements. Species on the neutron-
rich side are made by bombarding target material with 238U,
creating unstable heavy atoms which immediately undergo
fission to produce very neutron-ich products (e.g. Geissel
et al., 2003). Knowledge about these unstable nuclei will
improve our understanding of the nucleosynthetic r-process
which occurs in supernovae (Thoennessen and Sherrill,
2011).

A small number of unstable nuclides have sufficiently
long halflives that they have not entirely decayed to extinc-
tion since the formation of the solar system. A few other
shortlived nuclides are either continuously generated in the
decay series of uranium and thorium, or produced by cosmic
ray bombardment of stable nuclides. These nuclides, and one
or two extinct short-lived isotopes, plus their daughter prod-
ucts, are the realm of radiogenic isotope geology. Those with
halflives over 0.5 Ma are marked in Fig. 1.2. Nuclides with
halflives over 1000 Ga decay too slowly to be geologically
useful. Observation shows that all of the other long-lived iso-
topes either have been or are being applied in geology.

|.2 Nucleosynthesis

A realistic model for the nucleosynthesis of the elements
must be based on empirical data for their ‘cosmic abun-
dance’. True cosmic abundances can be derived from stellar
spectroscopy or by chemical analysis of galactic cosmic rays.
However, such data are difficult to measure at high precision,
so cosmic abundances are normally approximated by solar-
system abundances. These can be determined by solar spec-
troscopy or by direct analysis of the most ‘primitive’ mete-
orites, carbonaceous chondrites. A comparison of the latter
two sources of data (Ross and Aller, 1976) demonstrates good
agreement for most elements (Fig. 1.3). Exceptions are the
volatile elements, which have been lost from meteorites, and
the Li-Be-B group, which are unstable in stars.
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Unstable nuclides with half-lives (t;) over 0.5 Ma, in
order of decreasing stability. Geologically useful parent nuclides
are marked. Some very long-lived radionuclides with no
geological application are also marked in brackets.

It is widely believed (e.g. Weinberg, 1977) that about 30
minutes after the ‘big bang’, the matter of the universe (in
the form of protons and neutrons) consisted mostly of 'H
and 22-28% by mass of *He, along with traces of 2H (deu-
terium) and 3He. Hydrogen is still by far the most abun-
dant element in the universe (88.6% of all nuclei) and with
helium, makes up 99% of its mass, but naturally occurring
heavy nuclides now exist up to atomic weight 254 or beyond
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Comparison of solar system abundances (relative to
silicon) determined by solar spectroscopy and by analysis of
carbonaceous chondrites. After Ringwood (1979).
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(Fig. 1.1). These heavier nuclei must have been produced by
nucleosynthetic processes in stars, and not in the big bang,
because stars of different ages have different compositions
which can be detected spectroscopically. Furthermore, stars
at particular evolutionary stages may have compositional
abnormalities, such as the presence of 2>*Cf in supernovae.
If nucleosynthesis of the heavy elements had occurred in the
big bang then their distribution would be uniform about the
universe.

[.2.1 Stellar Evolution

Present day models of stellar nucleosynthesis are based heav-
ily on a classic review paper by Burbidge et al. (1957), in which
eight element-building processes were identified (hydrogen
burning, helium burning, o, e, X, 1, s and p). Different pro-
cesses were invoked to explain the abundance patterns of
different groups of elements. These processes are, in turn,
linked to different stages of stellar evolution. It is therefore
appropriate at this point to summarize the life-history of
some typical stars (e.g. Iben, 1967). The length of this life-
history depends directly on the stellar mass, and can be
traced on a plot of absolute magnitude (brightness) against
spectral class (colour), referred to as the Hertzsprung-Russell
or H-R diagram (Fig. 1.4).

Gravitational accretion of a star of solar mass from cold
primordial hydrogen and helium would probably take about
1 Ma to raise the core temperature to ca. 107 K, when
nuclear fusion of hydrogen to helium can begin (Atkinson
and Houtermans, 1929). This process is also called ‘hydrogen
burning’. The star spends most of its life at this stage, as a
‘main sequence’ star, where an equilibrium is set up between
energy supply by fusion and energy loss in the form of radia-
tion. For the Sun, this stage will probably last ca. 10 Ga, but
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Schematic evolution of a large star showing
nucleosynthetic processes along its accelerating life-history in
response to increasing temperature. Time is measured
backwards from the end of the star’s life on the right. After
Burbidge et al. (1957).

a very large star with 15 times the Sun’s mass may remain in
the main sequence for only 10 Ma.

When the bulk of hydrogen in a small star has been con-
verted into *He, inward density-driven forces exceed outward
radiation pressure, causing gravitational contraction. How-
ever, the resulting rise in core temperature causes expansion
of the outer hydrogen-rich layer of the star. This forms a huge
low-density envelope whose surface temperature may fall to
ca. 4000 K, observed as a ‘red giant’. This stage lasts only one
tenth as long as the main sequence stage. When core temper-
atures reach 1.5 x 107 K, a more efficient hydrogen-burning
reaction becomes possible if the star contains traces of car-
bon, nitrogen and oxygen inherited from older generations
of stars. This form of hydrogen burning is called the C-N-O
cycle (Bethe, 1939).

At some point during the red giant stage, core temper-
atures may reach 10® K, when helium fusion to carbon is
ignited (the ‘helium flash’). Further core contraction, yield-
ing a temperature of ca. 10° K, follows as helium becomes
exhausted. At these temperatures an endothermic process of
a-particle emission can occur, allowing the building of heav-
ier nuclides up to mass 40. However, this quickly expends
the remaining burnable fuel of the star, which then cools to
a white dwarf.

More massive stars (of several solar masses) have a differ-
ent life-history. In these stars, greater gravitationally induced
pressure-temperature conditions allow the fusion of helium
to begin early in the red giant stage. This is followed by fur-
ther contraction and heating, allowing the fusion of car-
bon and successively heavier elements. However, as lighter
elements become exhausted, gravitationally induced con-
traction and heating occur at an ever increasing pace (Fig.
1.5), until the implosion is stopped by the attainment of
neutron-star density. The resulting shock wave causes a
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supernova explosion which ends the star’s life (e.g. Burrows,
2000).

In the minutes before explosion, when temperatures
exceed 3 x 10° K, very rapid nuclear interactions occur. Ener-
getic equilibrium is established between nuclei and free pro-
tons and neutrons, synthesizing elements like Fe by the so-
called e-process. The supernova explosion itself lasts only a
few seconds, but is characterized by colossal neutron fluxes.
These very rapidly synthesize heavier elements, terminating
at 2%4Cf, which undergoes spontaneous fission. Products of
the supernova explosion are distributed through space and
later incorporated in a new generation of stars.

[.2.2 Stages in the Nucleosynthesis of
Heavy Elements
A schematic diagram of the cosmic abundance chart is given
in Fig. 1.6. We will now see how different nucleosynthetic
processes are invoked to account for its form.

The element-building process begins with the fusion of
four protons to one *He nucleus, which occurs in three
stages:

H+'H— 2D +ef+v (Q=+1.44MeV, t;, = 14Ga)

2D+ 'H - 3He + vy (Q=+5.49MeV, t;, = 0.65)

*He + *He — *He + 2'H+y (Q=+12.86MeV, t;/, = 1Ma),

where Q is the energy output and ty); is the reaction time of
each stage (the time necessary to consume one half of the
reactants) for the centre of the Sun. The long reaction time
for the first step explains the long duration of the hydrogen-
burning (main sequence) stage for small stars like the Sun.
The overall reaction converts four protons into one helium
nucleus, two positrons and two neutrinos, plus a large out-
put of energy in the form of high-frequency photons. Hence
the reaction is very strongly exothermic. Although deu-
terium and 3He are generated in the first two reactions
above, their consumption in the third accounts for their
much lower cosmic abundance than *He.

If heavier elements such as carbon and nitrogen are
present in a star, the catalytic C-N-O sequence of reactions
can occur, which also combines four protons to make one
helium nucleus:

2C4+'H - BN4vy (Q=+1.95MeV, t;, = 13Ma)

BN - BCH+et +v (Q= +2.22MeV, t;, = 7 min)

BC4+1H - “N4vy (Q=+7.54MeV, 1, = 3Ma)

UN4+1H - B0 +vy (Q=+7.35MeV, t;,; = 0.3 Ma)

50— BN+et+v  (Q=+2.70MeV, t;,, = 825)

N+'H — ?C+*He (Q=+4.96MeV, t1; =100Kka).

The C-N-O elements have greater potential energy barriers
to fusion than hydrogen, so these reactions require higher
temperatures to operate than the simple proton—-proton (p—-
p) reaction. However, the reaction times are much shorter
than for the p—p reaction. Therefore the C-N-O reaction con-
tributes less than 10% of hydrogen-burning reactions in a
small star like the Sun, but is overwhelmingly dominant in
large stars. This explains their much shorter lifespan in the
main sequence.
Helium burning also occurs in stages:

“He + *He <> ®Be  (Q = +0.09 MeV)
8Be 4 *He < 12C* (Q = —0.37 MeV)
12C* — 12C + v (Q: —+7.65 MeV)

The ®Be nucleus is very unstable (t;, < 107'® s) and in the
core of a red giant the Be/He equilibrium ratio is estimated at
107°. However its life is just long enough to allow the possibil-
ity of collision with another helium nucleus. (Instantaneous
three-particle collisions are very rare.) The energy yield of the
first stage is small, and the second is actually endothermic,
but the decay of excited 2C* to the ground state is strongly
exothermic, driving the equilibrium to the right.

The elements Li, Be and B have low nuclear binding ener-
gies, so that they are unstable at the temperatures of 10”7 K
and above found at the centre of stars. They are therefore
bypassed by stellar nucleosynthetic reactions, leading to low
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cosmic abundances (Fig. 1.6). The fact that the five stable iso-
topes °Li, ’Li, °Be, 1°B and !B exist at all has been attributed
to fragmentation effects (spallation) of heavy cosmic rays
(atomic nuclei travelling through the galaxy at relativistic
speeds) as they hit interstellar gas atoms (Reeves, 1974). This
is termed the x-process.

Problems have been recognized in the x-process model
for generating the light elements Li, Be and B, since cos-
mic ray spallation cannot explain the observed isotope ratios
of these elements in solar system materials. However, Casse
et al. (1995) proposed that carbon and oxygen nuclei ejected
from supernovae can generate these nuclides by collision
with hydrogen and helium in the surrounding gas cloud.
This process is believed to occur in regions such as the Orion
nebula. The combination of supernova production with spal-
lation of galactic cosmic rays can explain observed solar sys-
tem abundances of Li, Be and B.

Following the synthesis of carbon, further helium-
burning reactions are possible, to produce heavier nuclei:

2C+4He — %0+y (Q=+7.15MeV)

160 +*He — ®Ne+7y (Q= +4.75MeV)

20Ne + “He — *Mg+vy (Q= +9.31MeV).

Intervening nuclei such as ®N can be produced by adding
protons to these species, but are themselves consumed
in the process of catalytic hydrogen burning mentioned
above.

In old red giant stars, carbon-burning reactions can
occur:

12C 4 12C - 2Mg+y (Q = +13.85MeV)

— BNa+'H (Q=+2.23MeV)

— Ne +“He (Q = +4.62MeV).

The hydrogen and helium nuclei regenerated in these pro-
cesses allow further reactions which help to fill in gaps
between masses 12 and 24.

When a small star reaches its maximum core temperature
of 10° K the endothermic a-process can occur:

2Ne +y — %0 4 *He (Q = —4.75MeV).

The energy consumption of this process is compensated by
strongly exothermic reactions such as:

20Ne 4 “He — Mg + y (Q = +9.31 MeV),

so that the overall reaction generates a positive energy bud-
get. The process resembles helium burning, but is distin-
guished by the different source of *He. The a-process can
build up from 2*Mg through the sequence 28Si, 325, 36Ar and
40Ca, where it terminates, owing to the instability of *Ti.
The maximum temperatures reached in the core of a
small star do not allow substantial heavy element produc-
tion. However, in the final stages of the evolution of larger

stars, before a supernova explosion, the core temperature
exceeds 3 x 10° K. This allows energetic equilibrium to be
established by very rapid nuclear reactions between the var-
ious nuclei and free protons and neutrons (the e-process).
Because °°Fe is at the peak of the nuclear binding energy
curve, this element is most favoured by the e-process (Fig.
1.6). However, the other first-series transition elements V, Cr,
Mn, Co and Ni in the mass range 50 to 62 are also attributed
to this process.

During the last few million years of a red giant’s life, a
slow process of neutron addition with emission of gamma
rays (the s-process) can synthesize many additional nuclides
up to mass 209 (see Fig. 1.7). Two possible neutron sources
are:

BC+4He — %O+n+vy

%INe + *He — Mg +n+y.

The 3C and ?'Ne parents can be produced by proton bom-
bardment of the common !2C and ?*Ne nuclides.

Because neutron capture in the s-process is relatively
slow, unstable neutron-rich nuclides generated in this pro-
cess have time to decay by p emission before further neutron
addition. Hence the nucleosynthetic path of the s-process
climbs in many small steps up the path of greatest stability
of proton/neutron ratio (Fig. 1.7) and is finally terminated by
the a decay of 2!°Po back to 2°°Pb and 2%°Bi back to 2°5Tl.

The ‘neutron capture cross-section’ of a nuclide expresses
how readily it can absorb incoming thermal neutrons, and
therefore determines how likely it is to be converted to
a higher atomic mass species by neutron bombardment.
Nuclides with certain neutron numbers (e.g. 50, 82 and 126)
have unusually small neutron capture cross-sections, mak-
ing them particularly resistant to further reaction and giv-
ing rise to local peaks in abundance at masses 90, 138 and
208. Hence, N = 50, 82 and 126 are empirically referred to as
neutron ‘magic numbers’.

In contrast to the s-process, which may occur over peri-
ods of millions of years in red giants, r-process neutrons are
added in very rapid succession to a nucleus before f decay
is possible. The nuclei are therefore rapidly driven to the
neutron-rich side of the stability line, until they reach a new
equilibrium between neutron addition and f decay, repre-
sented by the hatched zone in Fig. 1.7. Nuclides move along
this r-process pathway until they reach a configuration with
low neutron capture cross-section (a neutron magic num-
ber). At these points a ‘cascade’ of alternating f decays and
single neutron additions occurs, indicated by the notched
ladders in Fig. 1.7. Nuclides climb these ladders until they
reach the next segment of the r-process pathway. Nuclides
with neutron magic numbers build to excess abundances, as
with the s-process, but they occur at proton-deficient com-
positions relative to the s-process stability path. Therefore,
when the neutron flux falls off and nuclides on the ladders
undergo p decay back to the stability line, the r-process local
abundance peaks are displaced about 6-12 mass units below
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the s-process peaks (Fig. 1.6). The r-process is terminated by
neutron-induced fission at mass 254, and nuclear matter is
fed back into the element-building processes at masses of ca.
108 and 146. Thus, cycling of nuclear reactions occurs above
mass 108.

Because of the extreme neutron flux postulated for the
r-process, its occurrence is probably limited to supernovae.
However, Blake and Schramm (1976) proposed the exis-
tence of a process that occurred at intermediate neutron
fluxes between the s- and r-processes, which they called
the ‘n-process’. This could occur when neutron addition
only slightly exceeds rates of f decay. Although neglected
for many years, phenomena similar to the n-process have
received consideration in some recent modelling of super-
nova outflows (Meyer, 2005; Wanajo, 2007; Panov and Janka,
2009).

The effects of r- and s-process synthesis of typical heavy
elements may be demonstrated by an examination of the
chart of the nuclides in the region of the light rare earths
(Fig. 1.8). The step-by-step building of the s-process contrasts
with the ‘rain of nuclides’ produced by § decay of r-process
products. Some nuclides, such as 1*3Nd to 1*®Nd are produced
by both - and s-processes. Some, such as *2Nd are s-only
nuclides ‘shielded’ from the decay products of the r-process
by intervening nuclides. Others, such as *¥Nd and !>'Nd
are r-only nuclides which lie off the s-process production
pathway.

Several heavy nuclides from 74Se to °°Hg lie isolated on
the proton-rich side of the s-process growth path (e.g. 1*4Sm
in Fig. 1.8), and are also shielded from r-process production.
In order to explain the existence of these nuclides it is nec-

essary to postulate a p-process by which normal r- and s-
process nuclei are bombarded by protons at very high tem-
perature (>2 x 10° K), probably in the outer envelope of a
supernova.

|.3 Radioactive Decay

Nuclear stability and decay is best understood in the con-
text of the chart of nuclides. It has already been noted
that naturally occurring nuclides define a path in the chart
of the nuclides, corresponding to the greatest stability of
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-8 R] Part of the chart of the nuclides in the area of the
light rare earths to show p-, r- and s-process product nuclides.
After O’Nions et al. (1979).
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proton/neutron ratio. For nuclides of low atomic mass, the
greatest stability is achieved when the numbers of neutrons
and protons are approximately equal (N = Z), but as atomic
mass increases, the stable neutron/proton ratio increases
until NJZ = 1.5. Theoretical stability limits are illustrated
on a plot of N/Z against mass number (A) in Fig. 1.9 (Hanna,
1959).

The path of stability is in fact an energy ‘valley’ into
which the surrounding unstable nuclides tend to fall, emit-
ting particles and energy. This constitutes the process of
radioactive decay. The nature of particles emitted depends
on the location of the unstable nuclide relative to the energy
valley. Unstable nuclides on either side of the valley usually
decay by ‘isobaric’ processes. That is, a nuclear proton is con-
verted to a neutron, or vice versa, but the mass of the nuclide
does not change significantly (except for the ‘mass defect’
consumed as nuclear binding energy). In contrast, unstable
nuclides at the high end of the energy valley often decay by
emission of a heavy particle (e.g. o particle), thus reducing
the overall mass of the nuclide.

[.3.1 Isobaric Decay
Different decay processes indicated on Fig. 1.9 can best be
understood by looking at example sections of the chart
of nuclides. Figure 1.10 shows a part of the chart around
the element potassium. The diagonal lines indicate isobars
(nuclides of equal mass) which are displayed on energy sec-
tions in Fig. 1.11 and Fig. 1.12.

Nuclides deficient in protons decay by transformation of
a neutron into a proton and an electron. The latter is then
expelled from the nucleus as a negative ‘B’ particle (B7),
along with an anti-neutrino (v). The energy released by the
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Part of the chart of the nuclides, in coordinates of
atomic number (Z) against neutron number (N) in the region
of potassium. Stable nuclides are shaded; the long-lived unstable
nuclide “°K is hatched. Diagonal lines are isobars (lines of
constant mass number; A).

transformation is divided between the B particle and the
anti-neutrino as kinetic energy (Fermi, 1934). The observed
consequence is that the f particles emitted have a contin-
uous energy distribution from nearly zero to the maximum
decay energy. Low-energy § particles are very difficult to sepa-
rate from background noise in a detector, making the § decay
constant of nuclides such as ’Rb very difficult to determine
accurately by direct counting (Section 3.1).

In many cases the nuclide produced by p decay is left in
an excited state which subsequently decays to the ground
state nuclide by a release of energy. This may either be lost
as a y ray of discrete energy, or may be transferred from
the nucleus to an orbital electron, which is then expelled
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A simple energy section through the chart of
nuclides along the isobar A = 38 showing nuclides and isomers.
Data from Lederer and Shirley (1978).
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Energy section through the chart of nuclides along
isobar A = 40. Isomers are omitted for simplicity. For nuclides
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transitions by different decay routes is indicated. Data from
Lederer and Shirley (1978).

from the atom. In the latter case, nuclear energy emission
in excess of the binding energy of the electron is transferred
to the electron as kinetic energy, which is superimposed as a
line spectrum on the continuous spectrum of the § particles.
The meta-stable states, or ‘isomers’ of the product nuclide
are denoted by the superscript ‘m’, and have halflives from
less than a pico-second up to 241 years (in the case of 1°?™]r).
Many p emitters have complex energy spectra involving a
ground state product and more than one short-lived isomer,
as shown in Fig. 1.11. The decay of °Cl can yield 35 differ-
ent isomers of “°Ar (Lederer and Shirley, 1978), but these are
omitted from Fig. 1.12 for the sake of clarity.

Nuclides deficient in neutrons, e.g. 8K (Fig. 1.11), may
decay by two different processes: positron emission and elec-
tron capture. Both processes yield a product nuclide which
is an isobar of the parent, by transformation of a proton to a
neutron. In positron emission a positively charged electron
(B*) is emitted from the nucleus along with a neutrino. As
with B~ emission, the decay energy is shared between the
kinetic energy of the two particles. After having been slowed
down by collision with atoms, the positron interacts with an
orbital electron, whereby both are annihilated, yielding two
0.511 MeV vy rays (this forms part of the decay energy of the
nuclear transformation).

In electron capture decay (EC) a nuclear proton is trans-
formed into a neutron by capture of an orbital electron, usu-
ally from one of the inner shells, but possibly from an outer
shell. A neutrino is emitted from the nucleus, and an outer
orbital electron falls into the vacancy produced by electron

capture, emitting a characteristic X-ray. The product nucleus
may be left in an excited state, in which case it decays to the
ground state by y emission.

When the transition energy of a decay route is less
than the energy equivalent of the positron mass (2m.C? =
1.022 MeV), decay is entirely by electron capture. Thereafter,
the ratio B*/EC increases rapidly with increasing transition
energy (Fig. 1.12), but a small amount of electron capture
always accompanies positron emission even at high transi-
tion energies.

It is empirically observed (Mattauch, 1934) that adjacent
isobars cannot be stable. Since “°Ar and “°Ca are both sta-
ble species (Fig. 1.10), “°K must be unstable, and exhibits a
branched decay to the isobars on either side (Fig. 1.12).

1.3.2 Alpha and Heavy Particle Decay

Heavy atoms above bismuth in the chart of nuclides often
decay by emission of an o particle, consisting of two protons
and two neutrons (He?*). The daughter product is not an iso-
bar of the parent, and has an atomic mass reduced by four.
The product nuclide may be in the ground state, or remain
in an excited state and subsequently decay by y emission. The
decay energy is shared between kinetic energy of the o parti-
cle and recoil energy of the product nuclide.

The U and Th decay series are shown in Fig. 12.1. Because
the energy valley of stable proton/neutron ratios in this part
of the chart of the nuclides has a slope of less than unity, o
decays tend to drive the products off to the neutron-rich side
of the energy valley, where they undergo § decay. In fact
decay may occur before the corresponding o decay.

At intermediate masses in the chart of the nuclides, o
decay may occasionally be an alternative to positron or elec-
tron capture decay for proton-rich species such as 47Sm.
However, a decays do not occur at low atomic numbers
because the path of nuclear stability has a Z|N slope close
to unity in this region (Fig. 1.1). Any such decays would
simply drive unstable species along (parallel to) the energy
valley.

An exotic mode of radioactive decay was discovered in the
25U to 207Pb decay series (Rose and Jones, 1984), whereby
223Ra decays by emission of C directly to 2°°Pb with a decay
energy of 13.8 MeV. However this mode of decay occurs with
a frequency of less than 10~° of the a decay of ?**Ra.

[.3.3 Nuclear Fission and the Oklo

Natural Reactor

The nuclide 28U (atomic no. 92) undergoes spontaneous fis-
sion into two product nuclei of different atomic number, typ-
ically ca. 40 and 55 (Zr and Cs), along with various other
particles and a large amount of energy. Because the heavy
parent nuclide has a high neutron/proton ratio, the daugh-
ter products have an excess of neutrons and undergo iso-
baric decay by f emission. Although the frequency of spon-
taneous fission of 238U is less than 2 x 107° that of o decay,
in heavier transuranium elements spontaneous fission is the
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principal mode of decay. Other nuclides, such as 2>°U, may
undergo fission if they are struck by a neutron. Furthermore,
since fission releases neutrons which promote further fis-
sion reactions, a chain reaction may be established. If the
concentration of fissile nuclides is high enough, this leads
to a thermonuclear explosion, as in a supernova or atomic
bomb.

In special cases where an intermediate heavy-element
concentration is maintained, a self:sustaining but non-
explosive chain reaction may be possible. This depends
largely on the presence of a ‘moderator’. Energetic ‘fast’ neu-
trons produced by fission undergo multiple elastic collisions
with atoms of the moderator. They are decelerated into ‘ther-
mal’ neutrons, having velocities characteristic of the ther-
mal vibration of the medium, the optimum velocity for pro-
moting fission reactions in the surrounding heavy atoms.
One natural case of such an occurrence is known, termed
the Oklo natural reactor (Cowan, 1976; Naudet, 1976).

In May 1972, 235U depletions were found in uranium ore
entering a French processing plant and traced to an ore
deposit at Oklo in the Gabon Republic of central Africa. In
spite of its apparent improbability, there is overwhelming
geological evidence that the 23°U depletions were caused by
the operation of a natural fission reactor at around 1.8 Ga. It
appears that in the Early Proterozoic, conditions were such
that the series of coincidences needed to create a natural fis-
sion reactor were achieved more easily than at the present
day.

Uranium dispersed in granitic basement was probably
eroded and concentrated in stream-bed placer deposits.
It was immobilized in this environment as the insoluble
reduced form due to the nature of prevailing atmospheric
conditions. With the appearance of blue-green algae, the
first organisms capable of photosynthesis, the oxygen con-
tent of the atmosphere, and hence river water, probably rose,
converting some reduced uranium into more soluble oxi-
dized forms. These were carried down-stream in solution.
When the soluble uranium reached a river delta it must have
encountered sediments rich in organic ooze, creating an oxy-
gen deficiency which again reduced and immobilized ura-
nium, but now at a much higher concentration (up to 0.5%
uranium by weight).

After burial and compaction of the deposit, it was subse-
quently uplifted, folded and fractured, allowing oxygenated
ground waters to re-mobilize and concentrate the ores into
veins over 1 m wide of almost pure uranium oxide. Hence the
special oxygen fugacity conditions obtaining in the Protero-
zoic helped to produce a particularly concentrated deposit.
However, its operation as a reactor depended on the greater
235U abundance (3%) at that time, compared with the present
day level of 0.72%, reduced by a decay in the intervening time
(halflife = 700 Ma).

In the case of Oklo, light water (H,0), must have acted
as a moderator, and the nuclear reaction was controlled by
a balance between hot water loss by convective heating or
boiling, and replacement by cold groundwater influx. In this
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way the estimated total energy output (15000 mega-watt
years, representing the consumption of six tons of 23U) was
probably maintained at an average of only 20 kW for about
0.8 Ma.

Geochemical evidence for the occurrence of fission is
derived firstly from the characteristic elemental abundances
of fission products. For example, excess concentrations of
rare earths and other immobile elements such as Zr are
observed. Alkali metal and alkaline earths were probably
also enriched, but have subsequently been removed by leach-
ing. Secondly, the characteristic isotope abundances of some
elements can only be explained by fission (Raffenach et al.,
1976).

The Nd isotope composition of the Oklo ore is very dis-
tinctive (Fig. 1.13). 1*2Nd is shielded from isobaric decay of
the neutron-rich fission products (Fig. 1.8) so that its abun-
dance indicates the level of normal Nd. After correction for
an enhanced abundance of **Nd and '“°Nd due to neutron
capture by the large-cross-section nuclides **Nd and *°Nd,
Oklo Nd has an isotopic composition closely resembling that
of normal reactor fission product waste (Fig. 1.13).

Evidence for a significant neutron flux is also demon-
strated by the isotope signatures of actinide elements. For
example, the abundant isotope of uranium (**4U) readily cap-
tures fast neutrons to yield an appreciable amount of 2*°U,
which decays by B emission to 2*Np and then ?*Pu (Fig.
1.14). The latter decays by a emission with a half-life of 24 ka
to yield more 235U, contributing an extra 50% to the ‘burn-
able’ fuel, as in a ‘fast’ breeder reactor (‘fast’ refers to the
speed of the neutrons involved). Because the fission products
of 2°Pu and 3°U have distinct isotopic signatures, it is deter-
mined that very little ?°Pu underwent neutron-induced





